Dynamic etching of silicon for broadband antireflection applications
نویسندگان
چکیده
An electrochemical etching technique has been developed that provides continuous control over the porosity of a porous silicon layer as a function of etching depth. Thin films with engineered porosity gradients, and thus a controllable gradient in the index of refraction, have been used to demonstrate broadband antireflection properties on silicon wafer and solar cell substrates. A simulation was also developed to examine the effects of specific porosity profiles on film reflectivity. © 2002 American Institute of Physics. @DOI: 10.1063/1.1514832#
منابع مشابه
Investigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications
Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...
متن کاملOptimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution
In this paper, the morphology of chemically etched silicon with various concentration is reported. The surface of Silicon (100) has pyramidal structures which can be used for anti-reflection applications in solar cells. Pyramidal structures can capture incident sun light therefore can enhance the efficiency of silicon solar cells. The structure of silicon pyramid was studied using scanni...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملBiomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etchi...
متن کاملFormation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching
Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transit...
متن کامل